817 research outputs found

    Derivatives and inequalities for order parameters in the Ising spin glass

    Full text link
    Identities and inequalities are proved for the order parameters, correlation functions and their derivatives of the Ising spin glass. The results serve as additional evidence that the ferromagnetic phase is composed of two regions, one with strong ferromagnetic ordering and the other with the effects of disorder dominant. The Nishimori line marks a crossover between these two regions.Comment: 10 pages; 3 figures; new inequalities added, title slightly change

    Quantum annealing with antiferromagnetic fluctuations

    Full text link
    We introduce antiferromagnetic quantum fluctuations into quantum annealing in addition to the conventional transverse-field term. We apply this method to the infinite-range ferromagnetic p-spin model, for which the conventional quantum annealing has been shown to have difficulties to find the ground state efficiently due to a first-order transition. We study the phase diagram of this system both analytically and numerically. Using the static approximation, we find that there exists a quantum path to reach the final ground state from the trivial initial state that avoids first-order transitions for intermediate values of p. We also study numerically the energy gap between the ground state and the first excited state and find evidence for intermediate values of p that the time complexity scales polynomially with the system size at a second-order transition point along the quantum path that avoids first-order transitions. These results suggest that quantum annealing would be able to solve this problem with intermediate values of p efficiently in contrast to the case with only simple transverse-field fluctuations.Comment: 19 pages, 11 figures; Added references; To be published in Physical Review

    Location of the Multicritical Point for the Ising Spin Glass on the Triangular and Hexagonal Lattices

    Full text link
    A conjecture is given for the exact location of the multicritical point in the phase diagram of the +/- J Ising model on the triangular lattice. The result p_c=0.8358058 agrees well with a recent numerical estimate. From this value, it is possible to derive a comparable conjecture for the exact location of the multicritical point for the hexagonal lattice, p_c=0.9327041, again in excellent agreement with a numerical study. The method is a variant of duality transformation to relate the triangular lattice directly with its dual triangular lattice without recourse to the hexagonal lattice, in conjunction with the replica method.Comment: 9 pages, 1 figure; Minor corrections in notatio

    Multicritical Points of Potts Spin Glasses on the Triangular Lattice

    Full text link
    We predict the locations of several multicritical points of the Potts spin glass model on the triangular lattice. In particular, continuous multicritical lines, which consist of multicritical points, are obtained for two types of two-state Potts (i.e., Ising) spin glasses with two- and three-body interactions on the triangular lattice. These results provide us with numerous examples to further verify the validity of the conjecture, which has succeeded in deriving highly precise locations of multicritical points for several spin glass models. The technique, called the direct triangular duality, a variant of the ordinary duality transformation, directly relates the triangular lattice with its dual triangular lattice in conjunction with the replica method.Comment: 18 pages, 2, figure

    Quantum Annealing in the Transverse Ising Model

    Full text link
    We introduce quantum fluctuations into the simulated annealing process of optimization problems, aiming at faster convergence to the optimal state. Quantum fluctuations cause transitions between states and thus play the same role as thermal fluctuations in the conventional approach. The idea is tested by the transverse Ising model, in which the transverse field is a function of time similar to the temperature in the conventional method. The goal is to find the ground state of the diagonal part of the Hamiltonian with high accuracy as quickly as possible. We have solved the time-dependent Schr\"odinger equation numerically for small size systems with various exchange interactions. Comparison with the results of the corresponding classical (thermal) method reveals that the quantum annealing leads to the ground state with much larger probability in almost all cases if we use the same annealing schedule.Comment: 15 pages, RevTeX, 8 figure

    Duality in finite-dimensional spin glasses

    Full text link
    We present an analysis leading to a conjecture on the exact location of the multicritical point in the phase diagram of spin glasses in finite dimensions. The conjecture, in satisfactory agreement with a number of numerical results, was previously derived using an ansatz emerging from duality and the replica method. In the present paper we carefully examine the ansatz and reduce it to a hypothesis on analyticity of a function appearing in the duality relation. Thus the problem is now clearer than before from a mathematical point of view: The ansatz, somewhat arbitrarily introduced previously, has now been shown to be closely related to the analyticity of a well-defined function.Comment: 12 pages, 3 figures; A reference added; to appear in J. Stat. Phy

    Ensemble learning of linear perceptron; Online learning theory

    Full text link
    Within the framework of on-line learning, we study the generalization error of an ensemble learning machine learning from a linear teacher perceptron. The generalization error achieved by an ensemble of linear perceptrons having homogeneous or inhomogeneous initial weight vectors is precisely calculated at the thermodynamic limit of a large number of input elements and shows rich behavior. Our main findings are as follows. For learning with homogeneous initial weight vectors, the generalization error using an infinite number of linear student perceptrons is equal to only half that of a single linear perceptron, and converges with that of the infinite case with O(1/K) for a finite number of K linear perceptrons. For learning with inhomogeneous initial weight vectors, it is advantageous to use an approach of weighted averaging over the output of the linear perceptrons, and we show the conditions under which the optimal weights are constant during the learning process. The optimal weights depend on only correlation of the initial weight vectors.Comment: 14 pages, 3 figures, submitted to Physical Review

    Statistical mechanics of image restoration and error-correcting codes

    Full text link
    We develop a statistical-mechanical formulation for image restoration and error-correcting codes. These problems are shown to be equivalent to the Ising spin glass with ferromagnetic bias under random external fields. We prove that the quality of restoration/decoding is maximized at a specific set of parameter values determined by the source and channel properties. For image restoration in mean-field system a line of optimal performance is shown to exist in the parameter space. These results are illustrated by solving exactly the infinite-range model. The solutions enable us to determine how precisely one should estimate unknown parameters. Monte Carlo simulations are carried out to see how far the conclusions from the infinite-range model are applicable to the more realistic two-dimensional case in image restoration.Comment: 20 pages, 9 figures, ReVTe

    Competition between ferro-retrieval and anti-ferro orders in a Hopfield-like network model for plant intelligence

    Full text link
    We introduce a simple cellular-network model to explain the capacity of the plants as memory devices. Following earlier observations (Bose \cite{Bose} and others), we regard the plant as a network in which each of the elements (plant cells) are connected via negative (inhibitory) interactions. To investigate the performance of the network, we construct a model following that of Hopfield, whose energy function possesses both Hebbian spin glass and anti-ferromagnetic terms. With the assistance of the replica method, we find that the memory state of the network decreases enormously due to the effect of the anti-ferromagnetic order induced by the inhibitory connections. We conclude that the ability of the plant as a memory device is rather weak.Comment: To be pulished in Physica A (Proc. STATPHYS-KOLKATA V), 9 pages, 6 eps fig
    corecore